DS-1 1/4

DS-1 22 septembre 2018 Durée 4h

I Premier problème

1. Justifier que la série $\sum_{n>1} \frac{1}{n^2}$ converge.

Dorénavant on note (S_n) la suite de ses sommes partielles et ζ sa somme. C'est-à-dire :

$$\forall n \in \mathbb{N}^*, \ S_n = \sum_{p=1}^n \frac{1}{p^2}, \quad \zeta = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \lim_{n \to +\infty} S_n.$$

On considère pour tout nombre entier $p \ge 0$ les deux intégrales suivantes :

$$I_p = \int_0^{\pi/2} \cos^{2p}(t) dt$$
, $J_p = \int_0^{\pi/2} t^2 \cos^{2p}(t) dt$.

- 2. Convergence de la suite $(J_p/I_p)_{p\in\mathbb{N}}$.
 - a) Justifier que l'équation

$$\cos(x) = \frac{2}{\pi}$$

a une unique solution dans l'intervalle $[0, \frac{\pi}{2}]$.

b) Établir l'inégalité suivante pour tout nombre réel t tel que $0 \le t \le \pi/2$:

$$t \le \frac{\pi}{2}\sin(t).$$

(On pourra étudier une fonction auxiliaire)

c) Établir l'inégalité suivante pour tout nombre entier $p \geq 0$:

$$0 \le J_p \le \frac{\pi^2}{4} (I_p - I_{p+1}).$$

d) Montrer, en intégrant par parties l'intégrale I_{p+1} , que

$$I_{p+1} = \frac{2p+1}{2p+2}I_p$$

(on pourra poser $u'(t) = \cos(t)$ et $v(t) = \cos^{2p+1}(t)$ dans l'intégration par parties).

- e) Déduire des résultats précédents que J_p/I_p tend vers 0 quand p tend vers $+\infty$.
- 3. Calcul de ζ

DS-1 2/4

a) Justifier que:

$$I_p = p \int_0^{\pi/2} t \sin(t) \cos^{p-1}(t) dt.$$

On admet qu'en poursuivant¹ les calculs on montre que

$$I_p = p(2p-1)J_{p-1} - 2p^2J_p$$

b) Montrer qu'il existe une constante α , qu'on déterminera, telle que :

$$\frac{J_{p-1}}{I_{p-1}} - \frac{J_p}{I_p} = \frac{\alpha}{p^2}.$$

- c) Exprimer S_n à l'aide de la suite (J_p/I_p) et, éventuellement de la constante α .
- d)Calculer I_0 et J_0 , puis déterminer ζ .

II Deuxième problème

Les quatre parties sont dans une large mesure indépendantes. Les résultats démontrés au cours des parties B et C peuvent être utilisés, si nécessaire, dans la partie D.

Partie A Une fonction qui n'est pas intégrable

- 1. Montrer que pour $k \ge 1$, $\int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt = \int_0^{\pi} \frac{\sin u}{u + k\pi} du$.
- 2. En déduire que

$$\int_{\pi}^{(n+1)\pi} \frac{|\sin(t)|}{t} dt = \sum_{k=1}^{n} \int_{0}^{\pi} \frac{\sin u}{u + k\pi} du \ge \frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k}$$

Indication : on utilisera le fait que $\int_0^\pi \sin(u) du = 2$ pour minorer une intégrale.

3. En déduire que $\int_{\pi}^{+\infty} \frac{|\sin(t)|}{t} dt$ diverge.

Partie B Étude de la fonction $x \mapsto \int_0^{+\infty} \frac{\sin t}{t+x} dt$

On note $F:]0, +\infty[\longrightarrow \mathbb{R} \text{ et } G:]0, +\infty[\longrightarrow \mathbb{R} \text{ les applications définies, pour tout réel} x \in]0, +\infty[$ par :

$$F(x) = \int_1^x \frac{\sin u}{u} du$$
 et $G(x) = \int_1^x \frac{\cos u}{u} du$.

1. a) Montrer, pour tout réel $x \in]0, +\infty[: F(x) = -\frac{\cos x}{x} + \cos(1) - \int_1^x \frac{\cos u}{u^2} \, \mathrm{d}u$. En déduire que F admet une limite finie en $+\infty$. On note α cette limite. De manière analogue, on montre que G admet une limite finie en $+\infty$. On note β cette limite.

¹Pour vous, chez vous, faites-les!

DS-1 3/4

b) En déduire que, pour tout réel $x \in]0, +\infty[$, les intégrales $\int_x^{+\infty} \frac{\sin u}{u} du$ et $\int_x^{+\infty} \frac{\cos u}{u} du$ convergent, et que : $\int_x^{+\infty} \frac{\sin u}{u} du = \alpha - F(x)$ et $\int_x^{+\infty} \frac{\cos u}{u} du = \beta - G(x)$.

2. a) Montrer que, pour tout réel $x \in]0, +\infty[$ et tout réel $T \in]0, +\infty[$:

$$\int_0^T \frac{\sin t}{t+x} dt = \cos x \int_x^{x+T} \frac{\sin u}{u} du - \sin x \int_x^{x+T} \frac{\cos u}{u} du.$$

b) En déduire que, pour tout réel $x \in]0, +\infty[$, l'intégrale $\int_0^{+\infty} \frac{\sin t}{t+x} dt$ converge et que :

$$\int_0^{+\infty} \frac{\sin t}{t+x} dt = \cos x \int_x^{+\infty} \frac{\sin u}{u} du - \sin x \int_x^{+\infty} \frac{\cos u}{u} du.$$

On note $A:]0, +\infty[\longrightarrow \mathbb{R}$ l'application définie, pour tout réel $x \in]0, +\infty[$ par :

$$A(x) = \int_0^{+\infty} \frac{\sin t}{t+x} \, \mathrm{d}t.$$

3. Montrer que l'application A est de classe \mathcal{C}^2 sur $]0,+\infty[$ et que, pour tout réel $x\in]0,+\infty[$:

$$A''(x) + A(x) = \frac{1}{x}$$

- 4. Établir que A(x) et A'(x) tendent vers 0 lorsque x tend vers $+\infty$.
- 5. a) Montrer:

$$\forall x \in]0,1], \quad 0 \le \int_x^1 \frac{\cos u}{u} \, \mathrm{d}u \le -\ln x.$$

- b) En déduire que $\sin x \int_x^{+\infty} \frac{\cos u}{u} \, \mathrm{d}u$ tend vers 0 lors que x tend vers 0 par valeurs strictement positives.
- c) Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin u}{u} du$ converge, et établir que A(x) tend vers $\int_0^{+\infty} \frac{\sin u}{u} du$ lorsque x tend vers 0 par valeurs strictement positives.

Partie C Autour de la fonction $x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$

- 1. a) Montrer que, pour tout réel $x \in]0, +\infty[$ et tout entier naturel k, l'application θ_k définie par $\theta_k(t) = t^k e^{-xt}$ est bornée sur $[0, +\infty[$.
 - b) En déduire que l'intégrale $\int_0^{+\infty} \frac{t^k e^{-xt}}{1+t^2} dt$ converge.

On note, pour tout entier naturel $k, B_k :]0, +\infty[\longrightarrow \mathbb{R}$ l'application définie, pour tout réel $x \in]0, +\infty[$ par $: B_k(x) = \int_0^{+\infty} \frac{t^k e^{-xt}}{1+t^2} \, \mathrm{d}t.$ On admet que pour tout $k \in \mathbb{N}, B_k$ est \mathcal{C}^{∞} sur \mathbb{R}_+^* et $B_k' = -B_{k+1}$.

DS-1 4/4

2. a) Montrer que pour tout réel $x \in]0, +\infty[$:

$$B_0''(x) + B_0(x) = \frac{1}{x}$$

b) Montrer que, pour tout réel $x \in]0, +\infty[$:

$$0 \le B_0(x) \le \frac{1}{x}$$
 et $0 \le -B_0'(x) \le \frac{1}{x^2}$

et en déduire les limites de $B_0(x)$ et $B_0'(x)$ lorsque x tend vers $+\infty$.

3. a) Montrer:

$$\forall x \in]0, +\infty[, e^{-\sqrt{x}} \int_0^{\frac{1}{\sqrt{x}}} \frac{1}{1+t^2} dt \le B_0(x) \le \int_0^{+\infty} \frac{1}{1+t^2} dt.$$

b)En déduire la limite de $B_0(x)$ lorsque x tend vers 0 par valeurs supérieures.

Partie D Calcul de l'intégrale $\int_0^{+\infty} \frac{\sin u}{u} du$

On considère l'application $\varphi:]0, +\infty[\longrightarrow \mathbb{R}$ définie, pour tout réel $x \in]0, +\infty[$, par :

$$\varphi(x) = A(x) - B_0(x),$$

où A a été définie dans la partie I et B_0 a été définie dans la partie II. On pose $U:]0, +\infty[\longrightarrow \mathbb{R}$ l'application définie, pour tout réel $x \in]0, +\infty[$, par :

$$U(x) = (\varphi(x))^2 + (\varphi'(x))^2.$$

- 1. Montrer que U est constante sur $]0, +\infty[$.
- 2. Quelle est la limite de U lorsque x tend vers $+\infty$?
- 3. En déduire que, pour tout réel $x \in]0, +\infty[, A(x) = B_0(x).$
- 4. Quelle est la valeur de $\int_0^{+\infty} \frac{\sin u}{u} du$.